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Abstract. A partially reversible operation is introduced in quantum measurement processes and
the information-theoretical property is investigated. The dual map of a partially reversible operation
becomes reversible with respect to the intrinsic observable of a physical system. It is shown that the
amount of information about the intrinsic observable of the physical system, obtained in a quantum
measurement process described by a partially reversible operation, is equal to the decrease of the
entropy of the measured physical system.

The state change of a physical system that is caused by a quantum measurement process
is described by a completely positive map, called a quantum operation [1–6]. Such a state
change cannot be described, in general, by a unitary transformation. If the state change is
given by some unitary transformation, the initial state can be recovered by the inverse of the
unitary transformation. In general, it is impossible to recover the initial quantum state when
the state change is described by arbitrary quantum operations. Ueda and Kitagawa, however,
found the logical reversibility in the continuous measurement of photon number with the
quantum counter [7], and Imamoḡlu found it in the quantum nondemolition measurement of
photon number [8]. Royer obtained the quantum measurement process of a spin-1

2 system,
where the initial quantum state can be recovered from the post-measurement state with finite
probability [9]. Furthermore, Mabuchi and Zoller showed that the reverse of the state change
caused by the quantum measurement process is possible under the appropriate conditions [10].
Recently Nielsenet al have found the conditions for a quantum operation to describe the
reversible state change of a physical system [5,6] and they have shown that such a reversible
operation is closely related to the quantum teleportation [5] and to the quantum error correcting
code [6]. A quantum measurement process which can be described by a reversible operation
gives us no information about the quantum state of the measured physical system. In this
letter, we introduce a partially reversible operation in a quantum measurement process, and we
obtain the condition for a quantum measurement process to be described by a partially reversible
operation. It is shown that in a quantum measurement process described by a partially reversible
operation, the information gain about the intrinsic observable of the physical system is equal
to the entropy decrease of the measured physical system.

We briefly summarize the basic formulation of quantum measurement processes. To
measure some intrinsic observable of a physical system, we first prepare an appropriate
measurement apparatus and then we make the interaction between the measurement apparatus
and the physical system to create some quantum correlation between them. After the
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interaction, we obtain the value exhibited by the measurement apparatus. LetX̂S(x) be
a positive operator-valued measure (POVM) which represents the intrinsic observable and
ŶA(y) be a POVM of the measurement apparatus that describes the readout process of the
measurement outcomey. For the sake of simplicity, we assume that the parametersx andy
take only discrete values. We denote the spectral set of the intrinsic observable as�X and the
set of all possible measurement outcomes as�Y . In this case, we have

∑
x∈�X X̂S(x) = 1̂S and∑

y∈�Y ŶA(y) = 1̂A, where1̂S and1̂A are identity operators in the Hilbert spacesHS andHA of

the physical system and the measurement apparatus. Furthermore, letÛSA be a unitary operator
which describes the time-evolution of the system–apparatus compound system. If the quantum
state of the physical system before the interaction with the measurement apparatus is described
by a statistical operator̂ρSin and the measurement apparatus is prepared in the quantum state
ρ̂Ain, the quantum state of the system–apparatus compound system just before the read-out of
the measurement outcome becomesρ̂SAout = ÛSA(ρ̂Sin ⊗ ρ̂Ain)Û†

SA. Then the output probability
PAout(y)of the measurement apparatus and the quantum stateρ̂Sout(y)of the physical system after
obtaining the measurement outcomey are given respectively by the following formulae [1,2]

PAout(y) = TrS [L̂S(y)ρ̂Sin] ρ̂Sout(y) =
L̂S(y)ρ̂Sin

TrS [L̂S(y)ρ̂Sin]
(1)

whereL̂S(y) is the quantum operation of the physical system, which is defined for an arbitrary
operatorÔS defined on the Hilbert spaceHS ,

L̂S(y)ÔS = TrA[(1̂S ⊗ ŶA(y))ÛSA(ÔS ⊗ ρ̂Ain)Û†
SA]. (2)

In the physical system before the interaction with the measurement apparatus, the intrinsic
observable takes the valuexwith probabilityPSin(x) = TrS [X̂S(x)ρ̂Sin], and when after obtaining
the measurement outcomey, it takes the valuexwith probabilityPSout(x|y) = Tr[X̂S(x)ρ̂Sout(y)]
in the post-measurement state of the physical system. The information-theoretical properties
of quantum measurement processes have been investigated in detail [11–13].

The quantum operation̂LS(y) given by equation (2), which is a trace-decreasing and
completely positive map, can be represented by the decomposition formula [2]

L̂S(y)ÔS =
∑
j∈M

M̂S
j (y)ÔSM̂

S †
j (y) (3)

which is not uniquely determined by the quantum operationL̂S(y). For example, if we use
the spectral decomposition of the initial statistical operator of the measurement apparatus,
ρ̂Ain =

∑
k∈N pk|φA(k)〉〈φA(k)|, we obtain the decomposition operator,

MS
j (y) =

√
pk〈φA(k′)|(1̂S ⊗ Ŷ1/2

A (y))ÛSA|φA(k)〉 (4)

wherej = (k, k′) andM = N × N . The output probabilityPAout(y) of the measurement
apparatus is usually expressed in terms of the initial quantum stateρ̂Sin and the POVMẐS(y),
called the detection (decision) operator [14] or the operational observable [15, 16], of the
physical system such thatPAout(y) = TrS [ẐS(y)ρ̂Sin], where the POVMẐS(y) is given by

ẐS(y) = L̂†
S(y)1̂S =

∑
j∈M

M̂
S †
j (y)M̂S

j (y) (5)

which satisfies
∑

y∈�Y L̂
†
S(y)1̂S = 1̂S . Here the dual map̂L†

S(y) of the quantum operation

L̂S(y) is defined by the relation TrS [ÔSL̂S(y)Ô ′S ] = TrS [L̂†
S(y)OS · Ô ′S ], that is,

L̂†
S(y)ÔS = TrA[Û†

SA(ÔS ⊗ ŶA(y))ÛSA(1̂S ⊗ ρ̂Ain)]
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=
∑
j∈M

M̂
S †
j (y)ÔSM̂

S
j (y). (6)

The formulae given by equations (1)–(6) that describe quantum measurement processes of
discrete observables can be generalized for quantum measurement processes of continuous
observables [3,4].

The quantum operation̂LS(y) that yields the statistical operator̂ρSout(y), which is
conditional on the measurement outcomey, from the initial statistical operator̂ρSin is called
the reversible operation [5,6], if there exits a reversal operationR̂S(y) such that

R̂S(y)
{
L̂S(y)ρ̂Sin

TrS [L̂S(y)ρ̂Sin]

}
= ρ̂Sin (7)

which is written from equation (1),

R̂S(y)[L̂S(y)ρ̂in] = PAout(y)ρ̂in (8)

where the support of the initial statistical operatorρ̂Sin is confined to the subspaceH(0)S of the
Hilbert spaceHS . The reversal operation̂RS(y) is a trace-preserving and completely positive
map. The reversible operation is closely related to the quantum teleportation [5] and the
quantum error correcting code [6]. It is shown that any measurement process described by a
reversible quantum operation gives us no information about the initial quantum stateρ̂Sin of the
measured system [5,6], which is consistent with indistinguishability of quantum states. Thus
the output probabilityPAout(y) = TrS [L̂S(y)ρ̂Sin] for the reversible operation does not depend
on the initial quantum statêρSin of the measured physical system.

We now introduce a partially reversible operation. When the intrinsic observable
X̂S(x) that we want to measure is given by a one-dimensional projection operator such that
X̂S(x) = |ψS(x)〉〈ψS(x)| and the set{|ψS(x)〉 | x ∈ �X} is a complete orthonormal system
of the Hilbert spaceHS , any operatorÔS of the physical system is determined by giving
all the matrix elements〈ψS(x)|ÔS |ψS(x ′)〉. Then, roughly speaking, equation (7) requires
that all the matrix elements〈ψS(x)|ρ̂Sin|ψS(x ′)〉 should be recovered from the matrix elements
〈ψS(x)|ρ̂Sout(y)|ψS(x ′)〉. For the partially reversible operation with respect to the intrinsic
observableX̂S(x), we require that the diagonal elements of the initial quantum stateρ̂Sin should
be recovered from the diagonal elements of the quantum stateρ̂Sout(y) by some quantum
operationR̂S(y). Here it is assumed that the dual map,R̂†

S(y), of the reversal operation
induces the transformation of the intrinsic observable such thatX̂S(x)→ X̂S(f −1

y (x)), where
fy(x) ∈ �X is an invertible function ofx ∈ �X, conditional on the measurement outcome
y ∈ �Y . In this case, we have the quantum operationR̂†−1

S (y) which satisfies the relation
R̂†−1
S (y)X̂S(x) = X̂S(fy(x)). This means that the initial probabilityPSin(x) of the intrinsic

observable can be obtained from its post-measurement probabilityPSout(x|y) by changing the
argumentx asx → f −1

y (x). Then the quantum operation̂LS(y) becomes partially reversible

with respect to the intrinsic observablêXS(x) if it satisfies

TrS{X̂S(x)R̂S(y)[L̂S(y)ρ̂in]} = PSA(y|x)TrS [X̂S(x)ρ̂in] (9)

wherePSA(y|x) is a function of the measurement outcomey, conditional on the valuex of
the intrinsic observablêXS(x) of the physical system. In this equation, it is not necessary that
the intrinsic observablêXS(x) is a one-dimensional projection operator. Although we cannot
obtain any information about the initial quantum state of the physical system in the quantum
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measurement process described by the reversible operation, we can obtain some information
in the quantum measurement process described by the partially reversible operation.

Let us consider the properties of the partially reversible operationL̂S(y). We first obtain
from equation (9)

TrS{L̂†
S(y)[R̂

†
S(y)X̂S(x)] · ρ̂Sin} = TrS{L̂†

S(y)X̂S(f
−1
y (x)) · ρ̂Sin}

= PSAout (y|x)TrS [X̂S(x)ρ̂in]. (10)

If this equality holds for any initial statistical operatorρ̂Sin of the physical system, the following
relation must be satisfied

L̂†
S(y)X̂S(x) = PSA(y|fy(x))X̂S(fy(x)) (11)

which indicates that except for the proportional factorPSA(y|x), the intrinsic observable
X̂S(x) of the physical system is covariant under the dual mapL̂†

S(y) of the partially reversible
operation. Furthermore, sincêXS(fy(x)) = R̂†−1

S (y)X̂S(x), equation (11) is expressed as

R̂†
S(y)[L̂

†
S(y)X̂S(x)] = PSA(y|fy(x))X̂S(x) (12)

which means that the dual map of the partially reversible operation with respect to the intrinsic
observableX̂S(x) is the reversible operation for the intrinsic observableX̂S(x). If the intrinsic
observableX̂S(x) is ad-dimensional projector such that TrS X̂S(x) = d, we obtain

R̂†
S(y)

{
L̂†
S(y)X̂S(x)

TrS [L̂†
S(y)X̂S(x)]

}
= 1

d
X̂S(x) (13)

which is compared with equation (7) for the reversible operation.
The output probabilityPAout(y) of the measurement apparatus is calculated from

equations (1) and (11). The linearity of the quantum operationL̂†
S(y) yields

PAout(y) = TrS [L̂†
S(y)1̂S · ρ̂Sin]

=
∑
x∈�X

TrS [L̂†
S(y)X̂S(x) · ρ̂Sin]

=
∑
x∈�X

PSA(y|fy(x))TrS [X̂S(fy(x))ρ̂Sin]

=
∑
x∈�X

PSA(y|fy(x))P Sin(fy(x)). (14)

If the functionsPSA(y|x) andfy(x) and the spectral set�X satisfy the relation,∑
x∈�X

PSA(y|fy(x))F (fy(x)) =
∑
x∈�X

PSA(y|x)F (x) (15)

for any non-singular functionF(x), we obtain the relation between the probabilityPSin(x) of
the intrinsic observable in the initial quantum state and the output probabilityPAout(y) of the
measurement apparatus,

PAout(y) =
∑
x∈�X

PSA(y|x)P Sin(x). (16)

Thus if equation (15) holds, the functionPSA(y|x) appearing in equation (9) is the conditional
probability that the measurement outcomey, is obtained when the intrinsic observable of the
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physical system takes the valuex in the initial quantum statêρSin. In this case, the amount of
informationI (YAout;XSin) about the intrinsic observable of the physical system, obtained in the
quantum measurement process, can be represented by Shannon mutual entropy [12],

I (YAout;XSin) =
∑
x∈�X

∑
y∈�Y

PSA(y|x)P Sin(x) log

[
PSA(y|x)
PAout(y)

]
. (17)

In the quantum measurement process described by the reversible operation, since the output
probability does not depend on the initial quantum state of the physical system [5, 6], the
information gain by the quantum measurement becomes zero. This fact may be written as
I (YAout;XSin) = 0.

To obtain the entropy decrease of the physical system that is caused by the quantum
measurement process, we calculate the joint probabilityPSAout (x, y) that the measurement
outcomey is obtained and the intrinsic observable takes the valuex in the quantum state of the
physical system after the measurement. The joint probability is obtained from equation (11),

PSAout (x, y) = PSout(x|y)PAout(y)

= TrS [X̂S(x)ρ̂Sout(y)]P
A
out(y)

= TrS [X̂S(x)L̂S(y)ρ̂Sin]

= TrS [L̂†
S(y)X̂S(x) · ρ̂Sin]

= PSA(y|fy(x))P Sin(fy(x)). (18)

Then, assuming equation (15), we obtain the joint entropyH(XSout, Y
A
out) in the quantum

measurement process described by the partially reversible operation,

H(XSout, Y
A
out) = −

∑
x∈�X

∑
y∈�Y

P SAout (x, y) logPSAout (x, y)

= −
∑
x∈�X

∑
y∈�Y

PSA(y|x)P Sin(x) log[PSA(y|x)P Sin(x)]

= H(XSin) +H(YAout)− I (YAout;XSin) (19)

whereH(XSin) andH(YAout) are the Shannon entropy calculated by the initial probabilityPSin(x)

of the physical system and the output probabilityPAout(y) of the measurement apparatus, and
I (YAout;XSin) is given by equation (17). The conditional entropyH(XSout|YAout) of the physical
system after obtaining the measurement outcome becomes

H(XSout|YAout) = −
∑
x∈�X

∑
y∈�Y

P Sout(x|y)PAout(y) logPSout(x|y)

= H(XSout, Y
A
out)−H(YAout)

= H(XSin)− I (YAout;XSin). (20)

Therefore when we obtain the measurement outcome, the decrease of the entropy of the physical
system is given by

1H(XSout, X
S
in|YAout) = H(XSin)−H(XSout|YAout) = I (YAout;XSin). (21)

This result indicates that the information gainI (YAout;XSin) is equal to the entropy decrease
1H(XSout, X

S
in|YAout) of the physical system in the quantum measurement process described by

the partially reversible operation. Several examples of the quantum measurement process
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Table 1. Comparison between the reversible operation and the partially reversible operation in
quantum measurement processes.

Reversible operation Partially reversible operation

The reversibility of the Reversible for̂ρSin Reversible forX̂S(x)
quantum operation R̂S(y)[L̂S(y)ρ̂Sin] ∝ ρ̂Sin R̂†

S(y)[L̂
†
S(y)X̂S(x)] ∝ X̂S(x)

The coefficient in the The output probability The conditional probability
reversibility relation PAout(y) PSA(y|x)
The information gain No information gain The decrease of the entropy
by the measurement I (YAout;XSin) = 0 I (YAout;XSin) = 1H(XSout;XSin|YAout)

described by the partially reversible operation, in which equation (21) holds, are given
in [12,13].

The comparison between the reversible operation and the partially reversible operation
is summarized in table 1. Although in this letter, we have confined ourselves to considering
quantum measurement processes of discrete observables, the results can be generalized for
quantum measurement processes of continuous observables, using the formulation given
in [3, 4]. In any quantum measurement process described by a partially reversible operation
with respect to the intrinsic observable, which satisfies equation (15), the amount of information
about the intrinsic observable is equal to the decrease of the entropy of the physical system
caused by the quantum measurement process. The dual map of the partially reversible operation
becomes reversible for the intrinsic observable of the physical system. On the other hand,
quantum measurement processes described by reversible operations give us no information
about the quantum state of the physical system, which is consistent with the indistinguishability
of quantum states.

Finally, we consider quantum measurement processes of photon number, which are carried
out respectively by means of a lossless beam splitter (BS) [17,18], nondegenerate parametric
amplifier (PA) [17] and degenerate four-wave mixer (FM) [17, 19]. They are described by
the partially reversible operations with respect to the photon number. From equation (2), the
quantum operation̂LS(y) is determined by the POVM̂YA(y) and the initial quantum statêρAin
of the measurement apparatus and the unitary operatorÛSA which describes the state change
by the system–apparatus interaction. The measurement apparatus before the interaction with
the physical system is prepared in the vacuum stateρ̂Ain = |0A〉〈0A|. Since the photodetection
is assumed to be ideal, the POVM of the measurement apparatus is a projection operator
ŶA(m) = |mA〉〈mA|. The intrinsic observable of the physical system is given by a projection
operatorX̂S(n) = |nS〉〈nS |. Here,|nS〉 and|mA〉 are the Fock states of the physical system
and the measurement apparatus. In the photon-number measurement,�X and�Y are the sets
of non-negative integers. The unitary operators are given respectively by

ÛBS
SA = exp[−θ(â†

SâA − âS â†
A)] (22)

ÛPA
SA = exp[θ(â†

Sâ
†
A − âS âA)] (23)

ÛFM
SA = exp[−iθâ†

SâS(â
†
A + âA)] (24)

whereâS andâ†
S (âA andâ†

A) are the bosonic annihilation and creation operators of the physical
system (the measurement apparatus). The information-theoretical properties of these quantum
measurement processes have been investigated in detail [12]. The quantum operationL̂S(m)
and the reversal operation̂RS(m) for these photon-number measurement processes can be
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expressed as

L̂S(m)ÔS = M̂S(m)ÔSM̂
†
S(m) R̂S(m)ÔS = N̂S(m)ÔSN̂†

S (m) (25)

which are called the pure quantum operation [5,6], where the setM in equation (3) has only
one element. After straightforward calculation, we obtain

M̂BS
S (m) =

1√
m!

(
R
T

) 1
2m

âms T
1
2 â

†
S âS N̂BS

S (m) = (ÊmS )† (26)

M̂PA
S (m) =

1√
m!
F

1
2mâ

†m
S G

1
2 âS â

†
S N̂PA

S (m) = ÊmS (27)

M̂FM
S (m) = 1√

m!
(θ â

†
SâS)

me−
1
2 (θ â

†
S âS )

2
N̂FM
S (m) = 1̂S (28)

whereÊS = (âS â
†
S)
− 1

2 âS is the Susskind–Glogower phase operator of the physical system
[20, 21] andT = 1 − R = cos2 θ andF = 1 − G = tanh2 θ . Since the operator̂ES is
not unitary, but isometric, the quantum operationsL̂BS

S (m) andL̂PA
S (m) are partially reversible

by the isometric quantum operations. On the other hand, since the dual map of the quantum
operationL̂FM

S (m) makes the intrinsic observablêXS(n) unchanged, the reversal operation
R̂FM
S (m)becomes an identity operation. The conditional probabilityPSA(m|n)and the function

fm(n) are given respectively by

P BS
SA (m|n) =

n!

m!(n−m)!R
mT n−m f BS

m (n) = n +m (29)

P PA
SA(m|n) =

(n +m)!

m!n!
FmGn+1 f PA

m (n) = n−m (30)

P FM
SA (m|n) =

1

m!
(θn)2m exp[−(θn)2] f FM

m (n) = n (31)

which satisfy equation (15). Therefore, the amount of information about the photon number
of the physical system obtained by these quantum measurements is equal to the decrease of
the Shannon entropy of the physical system [12].
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