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Abstract. A partially reversible operation is introduced in quantum measurement processes and
the information-theoretical property is investigated. The dual map of a partially reversible operation
becomes reversible with respect to the intrinsic observable of a physical system. Itis shown that the
amount of information about the intrinsic observable of the physical system, obtained in a quantum
measurement process described by a partially reversible operation, is equal to the decrease of the
entropy of the measured physical system.

The state change of a physical system that is caused by a quantum measurement process
is described by a completely positive map, called a quantum operation [1-6]. Such a state
change cannot be described, in general, by a unitary transformation. If the state change is
given by some unitary transformation, the initial state can be recovered by the inverse of the
unitary transformation. In general, it is impossible to recover the initial quantum state when
the state change is described by arbitrary quantum operations. Ueda and Kitagawa, however,
found the logical reversibility in the continuous measurement of photon number with the
guantum counter [7], and Imarglu found it in the quantum nondemolition measurement of
photon number [8]. Royer obtained the quantum measurement process of%asapa'tem,

where the initial quantum state can be recovered from the post-measurement state with finite
probability [9]. Furthermore, Mabuchi and Zoller showed that the reverse of the state change
caused by the quantum measurement process is possible under the appropriate conditions [10].
Recently Nielseret al have found the conditions for a quantum operation to describe the
reversible state change of a physical system [5, 6] and they have shown that such a reversible
operation is closely related to the quantum teleportation [5] and to the quantum error correcting
code [6]. A guantum measurement process which can be described by a reversible operation
gives us no information about the quantum state of the measured physical system. In this
letter, we introduce a partially reversible operation in a quantum measurement process, and we
obtain the condition for a quantum measurement process to be described by a partially reversible
operation. Itis shownthatin a quantum measurement process described by a partially reversible
operation, the information gain about the intrinsic observable of the physical system is equal
to the entropy decrease of the measured physical system.

We briefly summarize the basic formulation of quantum measurement processes. To
measure some intrinsic observable of a physical system, we first prepare an appropriate
measurement apparatus and then we make the interaction between the measurement apparatus
and the physical system to create some quantum correlation between them. After the
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interaction, we obtain the value exhibited by the measurement apparatus¥set be
a positive operator-valued measure (POVM) which represents the intrinsic observable and
Ya(y) be a POVM of the measurement apparatus that describes the readout process of the
measurement outcome For the sake of simplicity, we assume that the parametersd y
take only discrete values. We denote the spectral set of the intrinsic observéhjeaasl the
set of all possible measurement outcomeasin this case, we havEXEQX Xs(x) = isand

Zyegy Va (y) = iA, Whereig andiA are identity operators in the Hilbert spaéésand?H 4 of

the physical system and the measurement apparatus. Furthermiggg beta unitary operator

which describes the time-evolution of the system—apparatus compound system. If the quantum
state of the physical system before the interaction with the measurement apparatus is described
by a statistical operatgiS and the measurement apparatus is prepared in the quantum state
4, the quantum state of the system—apparatus compound system just before the read-out of
the measurement outcome becomé$ = Usa (55 ® p)UL,. Then the output probability

P2 .(y) ofthe measurement apparatus and the quantumysiate) of the physical system after
obtaining the measurement outcomare given respectively by the following formulae [1, 2]

ACAS ()’)/5[51
Trs[Ls(0)p5]

whereL () is the quantum operation of the physical system, which is defined for an arbitrary
operatorOs defined on the Hilbert spadés,

Ls(y)0s = Tral(ds ® Pa(y)Wsa(Os ® Hlii ], (2)
In the physical system before the interaction with the measurement apparatus, the intrinsic
observable takes the valuevith probability P} (x) = Trs[Xs(x); ], and when after obtaining
the measurement outcomgt takes the value with probability P35, (x|y) = Tr[Xs(x) Pou]
in the post-measurement state of the physical system. The information-theoretical properties
of quantum measurement processes have been investigated in detail [11-13].

The guantum operatiofis(y) given by equation (2), which is a trace-decreasing and

completely positive map, can be represented by the decomposition formula [2]

Ls(0)0s =" Mi(y)0sM; () 3)

JjeM

PO = Trs[Ls() 53] Pau(y) = 1)

which is not uniquely determined by the quantum operatigfyy). For example, if we use
the spectral decomposition of the initial statistical operator of the measurement apparatus,
pd = Y ken Prloa(k)) (@4 (k)|, we obtain the decomposition operator,

ME(y) = Pe(pa k) As @ D)2 (0))Wsalda k) 4)

wherej = (k,k’) andM = N x N. The output probabilityPZ,(y) of the measurement
apparatus is usually expressed in terms of the initial quantumiaaed the POVMZ;(y),

called the detection (decision) operator [14] or the operational observable [15, 16], of the
physical system such th&,(y) = Trs[Z5(y) 53], where the POVME;(y) is given by

Zs(y) = Lsis =Y MT )M (y) (5)
JEM

which satisfiesy" .o £5(»)1s = 15. Here the dual mag{(y) of the quantum operation
Ls(y) is defined by the relation TFOsLs(y) %] = Trs[£h(y) Os - O}], that is,

LL(3)Os = Tralthl (05 ® Pa(0)Usa(ds ® pi)]
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=Y M) OsM7 (). (6)
JEM

The formulae given by equations (1)—(6) that describe quantum measurement processes of
discrete observables can be generalized for quantum measurement processes of continuous
observables [3,4].

The quantum operatiorls(y) that yields the statistical operatgis,(y), which is
conditional on the measurement outcomerom the initial statistical operatqgs’ is called
the reversible operation [5, 6], if there exits a reversal operaiigty) such that

A ﬁS(Y)ﬁ‘S ~S
Rs) | =50 L _ s @)
s {Trs[.cs(y)ﬁfn]} P

which is written from equation (1),
RsWILs ()] = P in (8)

where the support of the initial statistical operafiris confined to the subspae&” of the

Hilbert spaceis. The reversal operatioRs(y) is a trace-preserving and completely positive
map. The reversible operation is closely related to the quantum teleportation [5] and the
quantum error correcting code [6]. It is shown that any measurement process described by a
reversible quantum operation gives us no information about the initial quantunp$tatehe
measured system [5, 6], which is consistent with indistinguishability of quantum states. Thus
the output probabilityP2,(y) = Trs[ﬁs(y)ﬁiﬁ] for the reversible operation does not depend

on the initial quantum statg’ of the measured physical system.

We now introduce a partially reversible operation. When the intrinsic observable
Xs(x) that we want to measure is given by a one-dimensional projection operator such that
Xs(x) = |¥s(x))(¥s(x)| and the sef|ys(x)) | x € Qx} is a complete orthonormal system
of the Hilbert spacés, any operatorOs of the physical system is determined by giving
all the matrix element$ys(x)|Os|¥s(x")). Then, roughly speaking, equation (7) requires
that all the matrix elemenl(sbs(x)|/3if1|1ps(x’)) should be recovered from the matrix elements
(Ys ()| ps1¥s(x")). For the partially reversible operation with respect to the intrinsic
observablets (x), we require that the diagonal elements of the initial quantum Afashould
be recovered from the diagonal elements of the quantum gfgte) by some quantum
operationRs(y). Here it is assumed that the dual ma%f;(y), of the reversal operation
induces the transformation of the intrinsic observable suchithat) — )Qg(fyfl(x)), where
fy(x) € Qx is an invertible function ok € Qx, conditional on the measurement outcome
y € Qy. In this case, we have the quantum operaﬂiﬂn’l(y) which satisfies the relation
R () X5(x) = Xs(fy(x)). This means that the initial probabilit§? (x) of the intrinsic
observable can be obtained from its post-measurement probakjljtyt |y) by changing the
argumentr asx — f,*(x). Then the quantum operatidhy (y) becomes partially reversible

with respect to the intrinsic observabtg (x) if it satisfies

Trs{Xs(ORsMILs () pin]} = Psa(ylx) Trs[Xs(x)pin] 9)

where Ps4 (y|x) is a function of the measurement outcomeconditional on the value of

the intrinsic observablé’s(x) of the physical system. In this equation, it is not necessary that
the intrinsic observablé’s(x) is a one-dimensional projection operator. Although we cannot
obtain any information about the initial guantum state of the physical system in the quantum
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measurement process described by the reversible operation, we can obtain some information
in the quantum measurement process described by the partially reversible operation.

Let us consider the properties of the partially reversible operatidgn). We first obtain
from equation (9)

Trs{ L5 IR Xs (0] - A3} = Trs{LE 0 Xs (1)) - o)
= Pt /1) Trs[Xs () finl. (10)

If this equality holds for any initial statistical operatgj; of the physical system, the following
relation must be satisfied

LI X5(x) = Psa(y] () Xs(f,(x)) (11)

vyhich indicates that except for the proportional facerAgy|x), the intrinsic observable
Xs(x) of the physical system is covariant under the dual m@@) of the partially reversible
operation. Furthermore, siné& (f, (x)) = R&(y)Xs(x), equation (11) is expressed as

REDMILL D) X5 (0)] = Psa(yl fy(x) Xs(x) (12)

which means that the dual map of the partially reversible operation with respect to the intrinsic
observableXs(x) is the reversible operation for the intrinsic observabiéx). If the intrinsic
observableXs(x) is ad-dimensional projector such thatslit’s(x) = d, we obtain

R LI(3) X (x) 1.
RE s el V=X 13
sV ){Trs[£§<y>xs(x>]} atw 13

which is compared with equation (7) for the reversible operation.
The output probability P2, (y) of the measurement apparatus is calculated from

equations (1) and (11). The linearity of the quantum operafilc(ry) yields

PAY) = Trs[LEonis - 5]
= Z Tfs[ﬁg()’)XAs(x) Py

XEQX

= Y Psalylfy(0) Trs[Xs(f,(x) A

x€Qy

= Y PsaOlfH@)PR(f (). (14)

xXeQyx

If the functionsPs4 (y|x) and f, (x) and the spectral s€tx satisfy the relation,

D PsaGIf )V F(fy(x) = Y Psa(ylx)F(x) (15)

XEQX XEQX

for any non-singular functio (x), we obtain the relation between the probabilﬁ\}(x) of
the intrinsic observable in the initial quantum state and the output probaBifitgy) of the
measurement apparatus,

Pai() = D Psa(yx) P3(x). (16)
xeRy

Thus if equation (15) holds, the functidty 4 (v|x) appearing in equation (9) is the conditional
probability that the measurement outcomes obtained when the intrinsic observable of the
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physical system takes the valuén the initial quantum statg?. In this case, the amount of
information?’ (YZ,; X3) about the intrinsic observable of the physical system, obtained in the
quantum measurement process, can be represented by Shannon mutual entropy [12],

I (Yo Xi) = D > Psa(ylx)Piy(x)log [M] 17

A
xeQx yeQy Pu(»)

In the quantum measurement process described by the reversible operation, since the output
probability does not depend on the initial quantum state of the physical system [5, 6], the
information gain by the quantum measurement becomes zero. This fact may be written as
1(Ygus X33) =0.

To obtain the entropy decrease of the physical system that is caused by the quantum
measurement process, we calculate the joint probabfify(x, y) that the measurement
outcomey is obtained and the intrinsic observable takes the vainghe quantum state of the

physical system after the measurement. The joint probability is obtained from equation (11),

Poit(x, ¥) = Pou(x[y) Pa(y)
= Trs[Xs(x) A5, ()] Py
= Trs[Xs(x) Ls(») 3]
= Trs[£3(y)Xs(x) - by
= Psa(y| () PS(f (). (18)

Then, assuming equation (15), we obtain the joint entréfyx s ,, Y2, in the quantum
measurement process described by the partially reversible operation,

H(Xouw Yo =— Y D Pon(x.y)log Pa(x, y)

X€Qyx yeQy
== 2 Y PuG PRI l0g[Pua(yIx) PI()]
xeQy yeQy
= H(X|f1) + H(Yc?ut) - I(Yoft“; X'f‘) 49

whereH (X3) andH (Y2, are the Shannon entropy calculated by the initial probabf{jyx)

of the physical system and the output probabil,(y) of the measurement apparatus, and
1(Y2: X3) is given by equation (17). The conditional entroy X3 ,|Y4,) of the physical
system after obtaining the measurement outcome becomes

H(Xoul Yo == D Y Pou(x]y) Pay(y) 10g Pay(x[y)

xeQy yeQy
S A A
= H(Xoup You) — HYout
= H(X5) — I(Ya: X5). (20)

Therefore when we obtain the measurement outcome, the decrease of the entropy of the physical
system is given by

AH (Xou XinlYou) = H(X) — H(Xoul Yo = I Yaue Xid)- (21)

This result indicates that the information gaifyy; X;) is equal to the entropy decrease
AH (X3, X31Y4, of the physical system in the quantum measurement process described by

the partially reversible operation. Several examples of the quantum measurement process
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Table 1. Comparison between the reversible operation and the partially reversible operation in
quantum measurement processes.

Reversible operation Partially reversible operation

The reversibility of the  Reversible fqﬁ;f1 Reversible for¥s (x)
quantum operation  RsWMILs(AS] o 55 REWMILE()Es )] o< Bs(x)
The coefficient in the The output probability The conditional probability

reversibility relation PL) Psa(ylx)
The information gain No information gain The decrease of the entropy
by the measurement  I(Y4; X3) =0 I(YAs X3) = AH (XS X5 1Y4D

described by the partially reversible operation, in which equation (21) holds, are given
in[12,13].

The comparison between the reversible operation and the partially reversible operation
is summarized in table 1. Although in this letter, we have confined ourselves to considering
quantum measurement processes of discrete observables, the results can be generalized for
guantum measurement processes of continuous observables, using the formulation given
in [3,4]. In any quantum measurement process described by a partially reversible operation
with respectto the intrinsic observable, which satisfies equation (15), the amount of information
about the intrinsic observable is equal to the decrease of the entropy of the physical system
caused by the quantum measurement process. The dual map ofthe partially reversible operation
becomes reversible for the intrinsic observable of the physical system. On the other hand,
quantum measurement processes described by reversible operations give us no information
about the quantum state of the physical system, which is consistent with the indistinguishability
of quantum states.

Finally, we consider quantum measurement processes of photon number, which are carried
out respectively by means of a lossless beam splitter (BS) [17, 18], nondegenerate parametric
amplifier (PA) [17] and degenerate four-wave mixer (FM) [17,19]. They are described by
the partially reversible operations with respect to the photon number. From equation (2), the
quantum operatiofs(y) is determined by the POVNE,4 (y) and the initial quantum staj@
of the measurement apparatus and the unitary opefgfowhich describes the state change
by the system—apparatus interaction. The measurement apparatus before the interaction with
the physical system is prepared in the vacuum gigte- |04)(04|. Since the photodetection
is assumed to be ideal, the POVM of the measurement apparatus is a projection operator
Ya(m) = |ma)(ma|. The intrinsic observable of the physical system is given by a projection
operatorXs(n) = |ns){ns|. Here,|ngs) and|m,) are the Fock states of the physical system
and the measurement apparatus. In the photon-number measur@mpanil 2y are the sets
of non-negative integers. The unitary operators are given respectively by

U = expl-0(ajas — asa})] (22)
U = explp (@l — asiy)] (23)
UM = exp[—ifalag(al +aq)] (24)

wheredg and&; (@4 anda ,) are the bosonic annihilation and creation operators of the physical
system (the measurement apparatus). The information-theoretical properties of these quantum
measurement processes have been investigated in detail [12]. The quantum og&i@tipn

and the reversal operatidRs(m) for these photon-number measurement processes can be
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expressed as
Ls(m)Os = Mg(m)OsMi(m)  Rs(m)Os = Ns(m)OsNim)  (25)

which are called the pure quantum operation [5, 6], where thatat equation (3) has only
one element. After straightforward calculation, we obtain

1
~ 1 R\ 2" amLtatae S [
M§Sm) = —= (?) arTEss NSem) = (E9) (26)
m!

"7 PA 1 Imatm ;&SQT 7 PA rm

M (m):\/ﬁfz ag G2hsts N¢"(m) = E§ (27)
FEM ) = —— (6asyme 0" {EMGn) = i (28)

vm! s

whereEg = (&S&E)*%&S is the Susskind—Glogower phase operator of the physical system
[20,21] and7 = 1 — R = cofh andF = 1 — G = tanif6. Since the operatoEs is

not unitary, but isometric, the quantum operatid§S(m) and 25" (m) are partially reversible

by the isometric quantum operations. On the other hand, since the dual map of the quantum
operationﬁg""(m) makes the intrinsic observabl&(n) unchanged, the reversal operation
7@?'\" (m) becomes an identity operation. The conditional probabHity(m|n) and the function

fn(n) are given respectively by

|
PE3(min) = mRmTkm fBS(m)y =n+m (29)
PPA(mIn) = %?’”g”” FPAM) =n—m (30)
P (m|n) = %(9}1)2'" exp[—(6n)?] fMmny =n (31)

which satisfy equation (15). Therefore, the amount of information about the photon number
of the physical system obtained by these quantum measurements is equal to the decrease of
the Shannon entropy of the physical system [12].
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